Representing Diagnostic Knowledge for Probabilistic Horn Abduction

نویسنده

  • David Poole
چکیده

This paper presents a simple logical framework for abduction, with probabilities associated with hypotheses. The language is an extension to pure Prolog, and it has straight-forward implementations using branch and bound search with either logic-programming technology or ATMS technology. The main focus of this paper is arguing for a form of representational adequacy of this very simple system for diagnostic reasoning. It is shown how it can represent model-based knowledge, with and without faults, and with and without non-intermittency assumptions. It is also shown how this representation can represent any probabilistic knowledge representable in a Bayesian belief network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representing Bayesian Networks Within Probabilistic Horn Abduction

This paper presents a simple framework for Horn­ clause abduction, with probabilities associated with hypotheses. It is shown how this representation can represent any probabilistic knowledge representable in a Bayesian belief network. The main contributions are in finding a relationship between logical and prob­ abilistic notions of evidential reasoning. This can be used as a basis for a new w...

متن کامل

Probabilistic Horn Abduction and Bayesian Networks

This paper presents a simple framework for Horn clause abduc tion with probabilities associated with hypotheses The framework incorporates assumptions about the rule base and independence as sumptions amongst hypotheses It is shown how any probabilistic knowledge representable in a discrete Bayesian belief network can be represented in this framework The main contribution is in nding a relation...

متن کامل

A Viterbi-like algorithm and EM learning for statistical abduction

We propose statistical abduction as a rstorder logical framework for representing and learning probabilistic knowledge. It combines logical abduction with a parameterized distribution over abducibles. We show that probability computation, a Viterbilike algorithm and EM learning for statistical abduction achieve the same eÆciency as specilzed algorithms for HMMs (hidden Markov models), PCFGs (pr...

متن کامل

From Probabilistic Horn Logic to Chain Logic

Probabilistic logics have attracted a great deal of attention during the past few years. Where logical languages have, already from the inception of the field of artificial intelligence, taken a central position in research on knowledge representation and automated reasoning, probabilistic graphical models with their associated probabilistic basis have taken up in recent years a similar positio...

متن کامل

Statistical abduction with tabulation1

We propose statistical abduction as a rst-order logical framework for representing, inferring and learning probabilistic knowledge. It semantically integrates logical abduction with a parameterized distribution over abducibles. We show that statistical abduction combined with tabulated search provides an e cient algorithm for probability computation, a Viterbi-like algorithm for nding the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991